The authors wish to express their gratitude to D. E. Sands and P. G. Lenhert for allowing use of their ORTEP-II programs, to R. Shiono for providing us with a copy of DP-3 and DP-5, to the National Science Foundation for a fellowship for (C.D.S.), and to the Computer Center of the University of Louisville for putting computer time at our disposal.

References

- Abrahams, S. C., Collin, R. L. & Lipscomb, W. N. (1951). Acta Cryst. 4, 15–20.
- ANDREETTI, G. D., CAVALCA, L. & SGARABOTTO, P. (1971). Gazz. Chem. Ital. 101, 440–448.
- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1962). ORFLS, Report ORNL-TM-305, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- CASALONE, G. & MUGNOLI, A. (1971). J. Chem. Soc. (B), pp. 415-418.
- Cox, E. G. & Jeffrey, G. A. (1951). Proc. Roy. Soc. A 207, 110-112.
- DEWAR, R. B. K. (1970). Crystallographic Computing, edited by F. R. AHMED, pp. 63–65. Copenhagen: Munksgaard.
- DURIG, J. R. & LORD, R. C. (1966). J. Chem. Phys. 45, 61-66.
- ELAM, E. U. & DAVIS, H. F. (1967). J. Org. Chem. 32, 1562–1565.

- HANSON, H. P., HERMAN, F., LEA, J. D. & SKILLMAN, S. (1964). Acta Cryst. 17, 1040–1050.
- HORDVIK, A. (1966). Acta Chem. Scand. 20, 1885-1891.
- JOHNSON, C. K. (1965). ORTEP. Report ORNL-3794, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- Karle, I. L., Estlin, J. A. & Britts, K. (1967). Acta Cryst. 22, 567–573.
- KARLE, J. & HAUPTMAN, H. (1956). Acta Cryst. 9, 635-651.
- KARLE, J. & KARLE, I. L. (1966). Acta Cryst. 21, 849-859.
- LIDE, D. R. JR (1962). Tetrahedron, 17, 125-134.
- NAKAI, H. & KOYAMA, H. (1971). J. Chem. Soc. (B), pp. 1525–1529.
- NAKAI, H. & KOYAMA, H. (1972). J. Chem. Soc. Perkin II, pp. 248–252.
- Nelson, J. B. & Riley, D. P. (1945). Proc. Phys. Soc. 57, 160–177.
- PAULING, L. (1960). The Nature of the Chemical Bond. Ithaca: Cornell Univ. Press.
- SHIRRELL, C. D. & WILLIAMS, D. E. (1973). Acta Cryst. B29, 1648–1653.
- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). J. Chem. Phys. 42, 3175–3187.
- WILLIAMS, D. E. (1964). LCR-2, a Fortran Lattice Constant Refinement Program. U.S. Atomic Energy Commission Report IS-1052.
- WILLIAMS, D. E. & RUNDLE, R. E. (1964). J. Amer. Chem. Soc. 86, 1660–1666.
- WILSON, A. J. C. (1942). Nature, Lond. 150, 151-152.
- ZACHARIASEN, W. H. (1963). Acta Cryst. 16, 1139-1144.

Acta Cryst. (1973). B29, 2133

Molekül- und Kristallstruktur des trans, trans-Perhydro-dibenzo[d,i][1,2,3,6,7,8]hexathiecins

VON F. LEMMER UND F. FEHÉR

Institut für Anorganische Chemie der Universität Köln, Köln, Deutschland (BRD)

UND A. GIEREN, S. HECHTFISCHER UND W. HOPPE

Max-Planck-Institut für Biochemie, Abteilung für Strukturforschung I, 8033 Martinsried bei München, Deutschland (BRD)

(Eingegangen am 15 November 1972; angenommen am 16. Mai 1973)

The crystal structure of *trans,trans*-perhydrodibenzo[d_i *i*][1,2,3,6,7,8]hexathiecine has been determined by direct methods and refined by least-squares calculations. The final *R* index is 4.8% for 1302 observed reflexions. The crystals are monoclinic, space group $P2_1/n$. The unit-cell dimensions are: a = 10.77, b =9.10, c = 8.34 Å, $\beta = 99.65^{\circ}$. The asymmetric unit is half a molecule. All hydrogen atoms have been located. The ten-membered ring has a conformation analogous to that of cyclodecane. The positions of the sulphur atoms bound to carbon atoms are transdiaxial with respect to the cyclohexane ring. The C-S and S-S bond lengths are indicative of single bonding.

Einleitung

Im Rahmen unserer präparativen Arbeiten wurde eine grosse Zahl neuer heterocyclischer Ringe synthetisiert, die kettenförmig gebundenen Schwefel enthalten. Da zum Teil die Strukturen der entsprechenden Kohlenstoffverbindungen oder von Derivaten derselben bereits bekannt sind, schien es uns interessant, die Strukturen dieser neuen Verbindungen zu klären, um über die Veränderungen, die durch den Einbau der Schwefelatome entstehen, Aussagen machen zu können. In der folgenden Arbeit – eine vorläufige Mitteilung erschien bereits (Lemmer, Fehér, Gieren, Hechtfischer & Hoppe, 1970) – werden die Röntgenstrukturuntersuchungen an *trans,trans*-Perhydro-dibenzo[*d*, *i*] [1,2,-3,6,7,8]hexathiecin ($C_{12}H_{20}S_6$) (Fehér & Degen, 1967) im einzelnen beschrieben. Diese Verbindung enthält einen heterocyclischen Zehnring, als dessen Analogon das Cyclodecan anzusehen ist.

Experimentelles

Einkristalle des *trans,trans*-Perhydro-dibenzo[*d*, *i*] [1,2,3,6,7,8]hexathiecins wurden aus Brombenzol gewonnen. Die kristallographischen Daten sind: Raumgruppe P_{2_1}/n ; $a=10,76_8$, $b=9,10_4$, $c=8,34_2$ Å, $\beta=$ $99,6_5^{\circ}$; $D_m=1,48$ g cm⁻³; Z=2; $D_x=1,47$ g cm⁻³. Da die allgemeine Punktlage der Raumgruppe P_{2_1}/n vierzählig ist, bildet eine halbe Molekel die asymmetrische Einheit. Die Intensitätsmessungen wurden mit einem $0,24 \times 0,26 \times 0,32$ mm grossen Kristall auf einem automatischen Einkristalldiffraktometer (Siemens) durchgeführt. Es wurden mit Mo K α -Strahlung (Nb-Filter, $\mu=7,97$ cm⁻¹) alle Reflexe bis $\theta=26^{\circ}$ vermessen ($\theta/2\theta$ -Abtastung, 5-Wert-Messung). Von den 1573 gemessenen Reflexen wurden 271 nicht beobachtet ($I \le 2\sigma_I$).

Bestimmung und Verfeinerung der Struktur

Für die 300 grössten unitären Strukturfaktoren wurden die Vorzeichen mit Hilfe der Tripelproduktmethode unter Verwendung eines bei uns geschriebenen Programmes (Hoppe, Hechtfischer & Zechmeister, 1969; Hechtfischer, Steigemann & Hoppe, 1970) bestimmt. Alle weiteren Berechnungen wurden mit unserer Version des X-RAY-67-Systems (Stewart, 1967; Hoppe, Gassmann & Zechmeister, 1970) durchgeführt. Eine dreidimensionale Fouriersynthese mit den 300 phasierten U-Werten ergab die Lage aller Atome (ausser H). Die Struktur wurde nach der Methode der kleinsten Quadrate (volle Matrix) zunächst unter Verwendung von isotropen und anschliessend anisotropen Temperaturfaktoren bis zu einem *R*-Wert $\left[\sum_{i=1}^{n} |F_{c}|\right]/$ $\sum |F_{o}|$ von 6,5% verfeinert. Von der im X-RAY-System (Stewart, 1967) vorgesehenen Möglichkeit der gesonderten Behandlung der nicht beobachteten Reflexe wurde Gebrauch gemacht. Die Atomformfaktoren für neutralen Kohlenstoff und Schwefel wurden den International Tables for X-ray Crystallography (1962) entnommen. In einer in diesem Stadium berechneten Differenzfouriersynthese konnten die zehn höchsten Maxima den Wasserstoffatomen zugeordnet werden. Die Verfeinerung mit den Wasserstoffatomen (S und C anisotrop, H isotrop) ergab nach drei weiteren Zyklen einen R-Wert von 4,8%. Die Atomformfaktoren für Wasserstoff stammen von Stewart, Davidson & Simpson (1965). Im letzten Zyklus betrug die Veränderung der Parameter im Mittel 0,27 von der jeweiligen Standardabweichung.

Fig. 1 zeigt zweidimensionale Schnitte durch die Fouriersynthese nach der letzten Verfeinerung in Höhe der Schwefel- und Kohlenstoffatome eines Moleküls (molekulares Symmetriezentrum bei $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$) parallel zur (100)-Ebene. Gleichzeitig enthält diese Abbildung die Wasserstoffatome, wie sie in einer abschliesssenden Differenzfouriersynthese gefunden wurden. Die

Tabelle 1. Atomkoordinaten und Temperaturparameter

(a) Schwefel- und Kohlenstoffatome

Alle Werte sind mit 10 ⁵ multipliziert. In Klammern ist der mittlere Fehler σ angegeben. Anisotrope Temperaturfaktoren definiert nach $T = \exp \left[-(\beta_{11}h^2 + \beta_{22}k^2 + \beta_{33}l^2 + 2\beta_{12}hk + 2\beta_{13}hl + 2\beta_{23}kl)\right]$.									
x/a	y/b	z/c	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}	
34987 (11)	25496 (12)	53561 (14)	917 (11)	802 (13)	1583 (19)	- 350 (10)	713 (12)	- 246 (12)	
61048 (11)	44803 (11)	22322 (14)	9 2 6 (11)	786 (13)	1465 (18)	-166(10)	764 (12)	-198(12)	
45930 (11)	34846 (11)	73542 (13)	947 (11)	743 (12)	1186 (16)	10 (9)	463 (11)	157 (11)	
40606 (34)	33597 (43)	35627 (48)	459 (32)	687 (46)	1302 (63)	- 61 (30)	288 (35)	- 10 (43)	
54935 (34)	32500 (39)	36996 (45)	511 (32)	612 (43)	975 (55)	- 18 (30)	327 (34)	- 107 (40)	
59554 (39)	16918 (44)	33943 (51)	672 (38)	707 (48)	1249 (64)	154 (34)	209 (39)	- 78 (45)	
52303 (42)	9924 (49)	18266 (56)	811 (42)	794 (53)	1407 (72)	- 14 (38)	259 (43)	- 403 (51)	
38091 (45)	10132 (52)	18337 (66)	829 (45)	996 (59)	1837 (89)	-271 (42)	329 (51)	- 576 (60)	
33392 (42)	25890 (56)	20518 (61)	558 (39)	1278 (67)	1750 (84)	- 57 (41)	119 (44)	- 353 (61)	
	All Anisotrope x/a 34987 (11) 61048 (11) 45930 (11) 40606 (34) 54935 (34) 59554 (39) 52303 (42) 38091 (45) 33392 (42)	Alle Werte sind m Anisotrope Temperaturfak x/a y/b 34987 (11)25496 (12)61048 (11)44803 (11)45930 (11)34846 (11)40606 (34)33597 (43)54935 (34)32500 (39)59554 (39)16918 (44)52303 (42)9924 (49)38091 (45)10132 (52)33392 (42)25890 (56)	Alle Werte sind mit 10 ⁵ multipliz Anisotrope Temperaturfaktoren definiert x/a y/b z/c 34987 (11)25496 (12)53561 (14)61048 (11)44803 (11)22322 (14)45930 (11)34846 (11)73542 (13)40606 (34)33597 (43)35627 (48)54935 (34)32500 (39)36996 (45)59554 (39)16918 (44)33943 (51)52303 (42)9924 (49)18266 (56)38091 (45)10132 (52)18337 (66)33392 (42)25890 (56)20518 (61)	Alle Werte sind mit 10 ⁵ multipliziert. In Klan Anisotrope Temperaturfaktoren definiert nach $T = ex$ x/a y/b z/c β_{11} 34987 (11)25496 (12)53561 (14)917 (11)61048 (11)44803 (11)22322 (14)926 (11)45930 (11)34846 (11)73542 (13)947 (11)40606 (34)33597 (43)35627 (48)459 (32)54935 (34)32500 (39)36996 (45)511 (32)59554 (39)16918 (44)33943 (51)672 (38)52303 (42)9924 (49)18266 (56)811 (42)38091 (45)10132 (52)18337 (66)829 (45)33392 (42)25890 (56)20518 (61)558 (39)	Alle Werte sind mit 10 ⁵ multipliziert. In Klammern ist der Anisotrope Temperaturfaktoren definiert nach $T = \exp \left[-(\beta_{11}h^2 + \beta_{22}) + \frac{x/a}{2} + \frac{y/b}{2} + \frac{z/c}{2} + \frac{\beta_{11}}{2} + \frac{\beta_{22}}{2} + \frac{\beta_{23}}{2} + \frac{\beta_{23}}{2} + \frac{\beta_{23}}{2} + \frac{\beta_{23}}{2} + \frac{\beta_{24}}{2} + \beta_{24$	Alle Werte sind mit 10 ⁵ multipliziert. In Klammern ist der mittlere Feh Anisotrope Temperaturfaktoren definiert nach $T = \exp \left[-(\beta_{11}h^2 + \beta_{22}k^2 + \beta_{33}l^2 + x/a y/b z/c \beta_{11} \beta_{22} \beta_{33}\right]$ 34987 (11) 25496 (12) 53561 (14) 917 (11) 802 (13) 1583 (19) 61048 (11) 44803 (11) 22322 (14) 926 (11) 786 (13) 1465 (18) 45930 (11) 34846 (11) 73542 (13) 947 (11) 743 (12) 1186 (16) 40606 (34) 33597 (43) 35627 (48) 459 (32) 687 (46) 1302 (63) 54935 (34) 32500 (39) 36996 (45) 511 (32) 612 (43) 975 (55) 59554 (39) 16918 (44) 33943 (51) 672 (38) 707 (48) 1249 (64) 52303 (42) 9924 (49) 18266 (56) 811 (42) 794 (53) 1407 (72) 38091 (45) 10132 (52) 18337 (66) 829 (45) 996 (59) 1837 (89) 33392 (42) 25890 (56) 20518 (61) 558 (39) 1278 (67) 1750 (84)	Alle Werte sind mit 10 ⁵ multipliziert. In Klammern ist der mittlere Fehler σ angegel Anisotrope Temperaturfaktoren definiert nach $T = \exp \left[-(\beta_{11}h^2 + \beta_{22}k^2 + \beta_{33}l^2 + 2\beta_{12}hk + 2\beta_{13}hk + 2\beta_{13}hk + 2\beta_{13}hk + 2\beta_{13}hk + 2\beta_{13}hk + 2\beta_{12}hk + 2\beta_{13}hk + 2\beta_{12}hk + 2\beta_{13}hk + 2\beta_{12}hk + 2\beta_{13}hk + 2\beta_{12}hk + 2\beta_{13}hk + 2\beta_$	Alle Werte sind mit 10 ⁵ multipliziert. In Klammern ist der mittlere Fehler σ angegeben. Anisotrope Temperaturfaktoren definiert nach $T = \exp \left[-(\beta_{11}h^2 + \beta_{22}k^2 + \beta_{33}l^2 + 2\beta_{12}hk + 2\beta_{13}hl + 2\beta_{23}kl) \right]$. x/a y/b z/c β_{11} β_{22} β_{33} β_{12} β_{13} 34987 (11) 25496 (12) 53561 (14) 917 (11) 802 (13) 1583 (19) - 350 (10) 713 (12) 61048 (11) 44803 (11) 22322 (14) 926 (11) 786 (13) 1465 (18) - 166 (10) 764 (12) 45930 (11) 34846 (11) 73542 (13) 947 (11) 743 (12) 1186 (16) 10 (9) 463 (11) 40606 (34) 33597 (43) 35627 (48) 459 (32) 687 (46) 1302 (63) - 61 (30) 288 (35) 54935 (34) 32500 (39) 36996 (45) 511 (32) 612 (43) 975 (55) - 18 (30) 327 (34) 59554 (39) 16918 (44) 33943 (51) 672 (38) 707 (48) 1249 (64) 154 (34) 209 (39) 52303 (42) 9924 (49) 18266 (56) 811 (42) 794 (53) 1407 (72) - 14 (38) 259 (43) 38091 (45) 10132 (52) 18337 (66) 829 (45) 996 (59) 1837 (89) -271 (42) 329 (51) 33392 (42) 25890 (56) 20518 (61) 558 (39) 1278 (67) 1750 (84) - 57 (41) 119 (44)	

Tabelle 1 (Fort.)

(b) Wasserstoffatome

Die Atomkoordinaten sind mit 10⁴ multipliziert. In Klammern ist der mittlere Fehler (σ) angegeben.

	x/a	y/b	z/c	$B(Å^2)$
H(12)	3817 (48)	4381 (60)	3691 (61)	5,4 (1,3)
H(22)	5832 (39)	3578 (48)	4751 (53)	2, 9 (0,9)
H(31)	5795 (43)	1040 (53)	4377 (57)	4 ,2 (1,1)
H(32)	6926 (44)	1825 (51)	3391 (53)	4,0 (1,0)
H(41)	5322 (42)	1663 (52)	907 (54)	3,8 (1,0)
H(42)	549 2 (44)	- 19 (57)	1527 (56)	4,5 (1,1)
H(51)	3642 (41)	399 (51)	2809 (55)	3,7 (1,0)
H(52)	3272 (41)	538 (50)	753 (54)	3,5 (1,0)
H(61)	3460 (44)	3286 (55)	989 (59)	4,3 (1,1)
H(62)	2478 (52)	2590 (57)	2080 (59)	4,9 (1,2)

im letzten Zyklus der Verfeinerung erhaltenen Atomund Temperaturparameter sind in Tabelle 1 aufgeführt. Tabelle 2 gibt einen Vergleich der aus diesen Parametern berechneten mit den beobachteten Strukturfaktoren. Die Bindungslängen und -winkel sowie die Diederwinkel sind in Tabelle 3 angegeben.

Diskussion der Molekülstruktur

Fig. 2 vermittelt die Geometrie des Moleküls. Das Molekül besitzt 2/m Symmetrie, wobei nur das Symmetriezentrum kristallographischer Natur ist. Die Spiegelebene definiert durch die Atome S(3) und S(3') $(\bar{x}+1,\bar{y}+1,\bar{z}+1)$ sowie die Verbindungslinien der

Tabelle 2. Gemessene und berechnete Strukturfaktoren

Die 3 Spalten enthalten von links nach rechts: h, $|F_o| \cdot 10$ und $|F_c| \cdot 10$. Ein L hinter $|F_o| \cdot 10$ bezeichnet nicht beobachtete Reflexe $(I \le 2\sigma_I)$.

IFoi	IFc1	Fo	Fd	IFd	/Fcl	iFd	(Fc)	IFd	IFcl	IFo	i IFcl	IFai	(Fcl	(Fol	IFcI	IFal	IFcl	Fol	(Fc)	IFai	lFcl	IFo	IFcl
H,G,C 2 864 4 733 6 22L 8 66 10 92	8+1 768 22 98	H,1C,1 5 28L 4 28L 3 95 2 27L 1 145	21 25 103 41 201	-12 53 -11 9C -10 77 -5 312 -8 349 -7 153 -6 436	81 80 75 305 343 155 424	2 334 3 2CL 4 400 5 3L6 6 24L 7 240 8 227	323 156 315 235	6 48 7 113 8 51 H.S.2	87 122 50	G 29 10 20 10 10 10	1 24 1 3	-3 251 -4 84 -5 141 -6 71 -7 137 -8 161	1 146 146 72 144 170	-8 372 -7 306 -6 315 -5 32 -4 135 -3 214	377 307 312 32 123 151	3 227 7 24 1 557 0 93 -1 166 -2 166	211 20 346 74 141 142	7 27L H,4,4 A 41 7 20L 0 24	11 24 21	1 41 2 74L 3 27 4 25L 5 58 6 33 7 41	52 51	3 5 2 7 1 6 0 17 -1 24 -2 2	49 60 167 233 10
12 45 h,1.0 12 63 11 35 10 261	55 72 25	U 27L -1 25 -2 27L -3 249 -4 41 -5 25L	15 20 15 200 49 41	-5 546 -4 161 -1 115 -2 349 -1 653 0 256 1 84	541 100 117 338 669 245 74	9 58 16 27(11 2eL 12 29L H, 1, 2	15 13 27	5 67 4 48 3 2et 2 67 1 262 C 56 -1 165	60 40 10 66 207 55	7 5 6 41 5 24 4 64 3 45	46 46 46 45	+,7,4 -4 45 -5 26L -7 45 -6 154 -5 105	14 41 154	-1 154 U 26 t 409 2 313 3 124 4 155 5 165	431	-5 51 -6 45 -7 240 -7 240 -7 102 -10 25	52 61 24 14 103 30	5 124 4 76 3 149 2 107 1 #1 0 60 -1 (3)	122 65 139 105 76 57	7 35 7 35 7 68 5 39 4 55	37 60 42	-4 21 -5 7 -6 6 -7 11 -8 2 -9 6	201 79 46 105 11
9 28 8 3CC 7 49 6 53 5 219 4 274 3 33	21 315 60 45 238 280 39	H,9,1 -7 29L -6 54 -5 53 -4 65	28 54 56 70	2 A4 3 240 4 151 5 221 6 346 7 61 8 223	37 245 155 3-3 231	11 58 10 41 9 103 8 166 7 195 6 73 5 50	40 41 182 164 163 70 80	-2 65 -3 74 -4 164 -5 271 -6 124 -7 97	65 72 172 7 126 95	1 -1 70 -2 50 -3 120 -5 277	147 715 63 128 37 775	-4 228 -3 257 -2 127 -1 115 0 93 1 24 2 150	224 263 114 196 84 27 140	n 145 7 136 8 165 5 25L 10 26L 11 20L	1324	-10 27L -9 102 -8 105 -7 105 -6 341	17 192 115 109	-2 25 -3 44 -4 254 -5 44 -6 157 -7 85 -9 242	35 37 27 85 172 04 240	3 73 2 48 1 45 C 108 -1 237 -2 71 -3 61	75 104 40 223 13 50	-6 51 -7 4 -6 2 -5 11 -4 3	65 43 108 19
2 675 1 544 H, 2, 0 C 632 1 37	626 508	-3 155 -2 92 -1 253 0 33 1 26L 2 163 3 26L	161 54 262 40 20 170 12	9 91 10 27L 11 53 12 73 F+2+1	22 63 74	4 27 3 346 2 203 1 173 C 47 -1 129 -2 132	25 -328 -44 152 -44 130 115	+, 10, -5 2ft -6 28t -3 21t -2 130 -1 51	2 12 10 133 56	-7 255 -8 24 -10 24 -11 155	81 256 L 13 76 L 33	3 115 4 25L 5 59 6 144 7 43 9 36	116 10 55 132 37 26	17 40 6 46 6 23L 4 132 2 216	3t 47 7 141 248	-5 273 -6 46 -1 56 -2 41 -1 240 C 124 I 23L	265 76 100 35 239 117 11	-5 248 -10 79 H+3+6 -11 261 -10 257	274 80 11 243	-4 172 -5 30 -6 234 -7 61 -8 43 -9 108 -10 27L	179 263 54 111 7	-3 8 -2 20 -1 4 0 9 1 2 2 5 3 5	76 187 43 91 1 3 50 50
3 157 4 50 5 354 6 269 7 297 8 124 9 39	16C 45 369 293 298 132	5 121 6 28L 7 28L Hy8y1	126	11 71 10 71 9 26L 8 25L 7 281 6 214	73 65 11 10 262 216	-4 209 -5 322 -6 172 -7 110 -8 178 -9 70	196 313 157 119 175 65	1 27L 2 104 3 28L 4 49 F,11,	117 210 46 2	-11 27 -10 41 -4 131 -6 125 -7 61	1 76 30 131 128 14	8 94 7 62 6 25L 5 129 4 171	98 63 5 113 159	-2 180 -4 168 -6 418 -8 40 -10 187 -12 80	189 103 414 91 177 77	2 178 3 241 4 241 5 144 6 83 7 55	105	- t 62 - t 62 - 7 61 - 6 403 - 5 168 - 4 53 - 3 326 - 3 326	78 80 304 45 46 310	H,4,7 -9 163 -8 243 -7 88 -6 231	167 243 91 228	5 5 +.* 	49 48 21
10 204 11 27L 12 57 H, 3,0	227 17 56	7 185 6 63 5 46 3 242 2 55 1 44	191 64 50 251 50	+ 318 3 364 2 175 1 307 0 411 -1 706 -2 651	321 379 176 315 369 721	-11 127 -12 73 -12 73 -12 29L	124 77 21	C 26L H.O.3 -11 185 -5 32 -7 281	187 21 212	-4 17 -3 239 -7 00 -1 24 1 0 290 1 50	2 174 234 246 294 488	2 67 1 44 0 172 -1 210 -2 297 -3 117 -4 300	61 38 172 202 248 113 306	H,C,S -11 105 -9 386 -7 231 -5 369 -3 127	115 151 21 144	6 62 5 25L 4 10C 3 52 2 41	55 14 49 39	-1 241 C 21L 1 30 2 72 3 24L 4 3L 5 25L	2.2	-4 24L -3 121 -2 78 -1 73 C 75 1 109	16 107 72 63 65	1 21 0 70 -1 2 -2 6 -3 30 -4 2 -5 2	15 81 1 15 56 31 1 5
11 82 10 26L 9 219 8 112 7 8C 6 252 5 230	93 11 244 116 90 262 240	0 25L -1 15L -2 84 -3 66 -4 209 -5 73 -6 37	7 159 82 55 218 65 29	-3 277 -4 360 -5 273 -6 22L -7 40 -8 125 -9 127	276 364 250 11 36 172 130	-10 166 -5 60 -8 58 -7 219 -0 219 -5 57 -4 135	163 92 222 214 53	-5 345 -3 46 -1 216 1 158 3 627 5 225	379 56 232 162 661 223 269	5 20 5 25 6 51 7 150 9 30	31 71 54 143 135	-5 88 -6 24L -7 62 -8 44 -9 157 -10 35	87 12 57 50 1+C	-1 357 1 151 3 285 5 29 7 24L 9 26L	454 186 104 75 10	0 58 -1 30 -2 44 -3 275 -4 159 -5 75 -5 194	59 25 53 281 140 71	6 25L 7 26L 8 93 H+2+6 9 28L	15 # 75	3 78 4 25L 5 26L 6 104 H+5,7	14	-6 8, -7 6, Hui	82 96 18
4 158 3 336 2 625 1 331 H,4.0	207 336 645 341	-7 27L -8 140 -9 37 H,7,1	12 139 38	-10 140 -11 27L -12 28L -12 46	133 15 42	-3 479 -2 163 -1 349 0 483 1 223 2 244 3 365	470 153 330 407 218 230 356	9 25L 11 127 H,1.3 11 1C3 10 35	123 52 23	F, 1 8 81 7 76 6 15 5 230	,3 79 151 222	-11 43 -10 329 -9 251 -8 241 -7 241	47 328 11 23	H,1,5 10 21L 9 100 8 25L 7 40 6 49	4746	-7 221 -9 26L -9 52 +,8,5 -7 70	227 25 53	R 64 7 53 6 88 5 48 4 152 3 30 2 225	54 50 91 48 146 32 220	6 27L 5 71 4 26L 3. 25L 2 25L 1 213 C 45	19 68 19 20 20 249 36	-4 51 -3 20 -2 211 -1 30 0 130 1 21 2 2	50 2C7 31 122 L 17 9
0 74 1 485 2 529 3 466 4 365 5 82 6 207	67 500 541 476 368 85 217	-9 186 -8 142 -7 49 -6 309 -5 33C -4 80 -3 1CC	181 140 45 318 332 94 91	-11 185 -10 160 -9 25L -8 24L -7 45 -6 163 -5 21L	181 152 12 17 46 160 37	4 127 5 137 6 94 7 84 8 80 9 26 10 128	137 135 92 77 80 12 120	9 25L 8 43 7 118 6 3C 5 174 4 315 3 475	44 121 26 179 329 475	4 3, 3 99 2 24 1 59 0 139 -1 311 -2 24	34 47 140 307 1 17	-6 46 -5 23U -4 279 -3 49 -2 155 -1 46 C 22L	*******	* 64 4 220 3 84 2 245 1 336 C 46 -1 511	237 102 248 351 61 530	-6 40 -5 40 -4 206 -3 69 -2 196 -1 32 C 100	40 30 212 71 190 23 104	l 138 C 94 -1 239 -2 450 -3 23L -4 112 -5 259	144 242 418 108 250	-1 197 -2 24 -3 127 -4 24L -5 78 -6 32 -7 339	187 11 116 79 19 335	F.,1 -1 110 -2 21 F.,1	18 105 14
7 157 8 71 9 26L 10 63 11 75 12 83	166 73 31 57 61 57	-2 132 -1 216 0 24L 1 38 2 30 3 164 4 79	126 226 1 17 170	-4 175 -3 503 -2 503 -1 22 0 224 1 609 2 654	108 494 472 19 215 611 679	11 56 H.5.2 11 29L 10 80 9 27L	86 13 74 3	2 547 1 468 0 112 -1 217 -2 222 -3 563 -4 84	573 500 150 316 550 81	-3 104 -4 134 -5 9 -6 205 -7 25 -8 165 -9 91	96 142 54 207 1 64 94	1 42 2 95 3 34 4 311 5 43 6 227 7 37	43 932 301 58 223 35	-2 253 -3 11C -4 21 -5 64 -6 16C -7 185 -8 54	118 21 50 150 150 150	1 123 2 7C 3 25L 4 26L 5 55 H,9,5	122 20 7 17 57	-6 177 -7 254 -8 26 -9 112 -10 25L -11 26L	175 249 110 10 6	-8 58 -9 27L H. 0. 7 -8 76 -7 120	58 15 78 123	-4 21 -3 104 -2 2 -1 21 0 61	2C 97 22 13 56
11 28L 10 12C 9 57 8 14C 7 25L	3 119 58 151 11 97	6 164 7 106 8 168 9 28L Hrort	172	3 284 4 252 5 490 6 65 7 44 6 251 9 180	265 490 66 38 25 207	0 43 7 41 6 28 5 25L 4 387 3 80 2 497	405 9 22 3 29 3 29 3 29 3 29 3 29 3 29 3 2	-6 191 -7 352 -8 23L -9 161 -10 156 -12 90	188 34C 2C 164 155 83	-9 111 -8 56 -7 175	, 3 , 3 114 100 176	9 27 H.4.4 10 34 9 56	15	-10 182 -11 107 -12 81 H,2,5	100	3 62 2 102 1 67 0 104 -1 158 -2 123	62 63 103 159 127	-11 123 -10 19C -9 89 -8 62 -7 232	127 146 91 64 227	-5 35 -4 54 -3 46 -2 33 -1 26 C 91	21 45 28 10 81	2 e 1 4 C 4 -1 15 -2 7	54 50 42 135 69
5 51 4 401 3 22L 2 29 1 219 H.6.0	54 22 12 220	10 28L 9 70L 8 74 7 26L 6 61 5 142 4 143	11 71 65 C 59 140	11 4d 12 2dL H+C+1	71	0 379 -1 89 -2 577 -3 87 -4 65 -5 29 -6 125	360 89 572 93 54 24	-12 20L -12 20L -11 52 -10 121 -9 246	52	-5 215 -4 Loc -3 18 -2 235 -1 51 C 105	215	7 6C 6 48 5 116 4 191 3 276 2 58	60 48 115 109 204	-11 113 -10 97 -9 47 -8 198 -7 125 -6 221 -5 29	118 99 45 140 113 4	-3 26L -5 26L Hy9+6 -3 52 -2 1H	5 12 50	-5 34 -4 352 -3 74 -2 85 -1 137 0 433	27 374 70 80 140 481 267	2 87 3 43 4 28 5 62 +,7,7	17 41 21 57	-4 20 -3 141 -6 17 He ⁻	1 20 117 100
0 68 1 106 2 321 3 283 4 299 5 142	65 108 328 296 302 147	3 295 2 243 1 67 0 455 -1 231 -2 146 -3 124	300 241 66 447 15 150 120	7 157 5 312 3 47C 1 821 -1 162 -3 1190 -5 598	163 304 472 801 147 1197 578	-7 41 -8 175 -5 61 -10 102 -11 45	170 159 41	-8 338 -7 359 -6 159 -5 538 -4 468 -3 556 -2 715	334 345 150 720 447 541 653	2 34 3 24 4 54 5 130 6 20 7 21	37 L C 54 133 L 16 L 14	0 119 -1 131 -2 463 -3 110 -4 291 -5 40 -6 153	117 126 445 102 280 44	-4 365 -3 16 -2 435 -1 127 0 131 1 249 2 32	348 63 408 1219 257 257	-1 27L 0 99 H,8,6 3 62 2 123	22 50	2 06 3 53 4 24L 5 82 6 149 7 64 8 26L	74 58 3 77 150 55 26	3 125 2 46 1 52 0 90 -1 57 -2 26L -3 32	126 39 44 91 92 11 28	-6 1* -5 6 -3 2* -2 5 -1 9 0 13	156 55 83 225 46 85 132
6 233 7 62 9 36 10 44 11 91	247 67 101 41 38 95	-4 69 -5 257 -6 60 -7 355 -8 49 -9 31 -10 45	68 262 349 49 36	-7 34 -9 274 -11 183 #+0,2 -12 244	27 293 196 230	-11 76 -10 119 -9 84 -8 76 -7 41 -6 225	83 119 83 69 18 225	-1 548 C 26C 1 221 2 20L 3 1Ce 4 103 5 74	547 262 220 20 20 20 20 20 20 20 20 20 20 20 2	6 20 5 51 4 102 3 109 2 135	,3 L 20 103 105 132	-7 75 -8 32 -11 97 -9 178 -10 28 H, 3, 4	72 14 104 176 27	3 57 4 57 5 137 6 15 7 103 8 85 9 89	53,4937	1 145 0 30 -1 135 -2 213 -3 46 -4 43 -5 147	141 35 124 210 43 53 150	9 27L H,C,6 8 98 6 25L 4 147	9 91 2 151	-4 87 -5 36 -6 112 -8,8,7	88 32 117	1 61 2 81 3 21 Ha	6h 86 19 , 4 50
H, 7, 0 10 34L 9 35 8 32L 7 73 4 231	9 17 69 241	-11 82 +,5,1 -11 28L -10 40 -9 82 -1 120		-10 96 -8 235 -6 279 -4 102 -2 1085 0 974 2 267	111 233 262 67 1059 1050 284	-5 25L -4 155 -3 175 -2 39 -1 274 0 257 1 97	12 158 173 42 272 250 89	6 161 7 93 8 30 9 71 10 98 11 42	150 91 37 68 89 38	1 8 0 21 -1 2 -2 171 -3 175 -4 20 -5 145	83 L 4 L 12 182 L 13 L 13 L 13	-12 49 -11 26L -10 25L -7 52 -8 174 -9 67	48 18 4 50 176	10 85 M,3,5 9 26L 8 47 7 60	35	-6 104 H,7,6 -8 76 -7 97 -6 211	111 78 98 211	2 23L 0 55 -2 223 -4 93 -6 26L -8 266 -1C 1C8	15 70 248 87 12 276 114	-2 135 -1 158 C 98 H,C,P	133	2 3 1 9 C 2 -1 3 -2 8 -3 2 -4 12	24 96 21 81
4 105 3 271 2 366 N,8,0	47 271 347	-7 25L -6 129 -5 177 -4 39 -3 93 -2 110	120 121 171 32 69 112	6 218 6 105 10 86 12 29L Hele2	224 109 91 8	2 100 3 265 4 113 5 73 6 57 7 26L 8 60 9 371	281 119 79 62 23	11 27L 10 27 9 197 6 95 7 24L	0 10 18e 93 17	-7 101 -7 101 -5 80 -4 20	105 0,3 67	-5 281 -4 391 -3 246 -2 475 -1 108 0 442	279 383 235 462 110 429	5 40 4 71 3 159 2 143 1 147 0 179	157 4 6 4 7 4	-4 5C -3 202 -7 100 -1 120 0 33 1 32	41 194 93 117 26 30	H,0,7 -11 208 -9 132 -7 24L -5 24L	244 149 11 18	-4 113 -2 5C C 48 2 155 4 26L 6 110	150 74 206 120	-6 5 -7 12 -7 12	128 19
L 28L 2 77 3 93 4 33 5 135 6 205 7 27L	13 6C 107 25 134 204 2	0 21L 1 613 2 123 3 183 4 53 5 208 6 154	17 615 120 183 62 214 155	12 29L 18 27L 10 63 9 26L 8 94 7 208 6 504	18 70 31 93 218 510	10 123 H,7,2 9 122 8 140 7 27L	112	5 285 4 146 3 216 2 203 1 309 C 236 -1 373	269 135 209 159 307 235 365	-2 76 -1 25 0 36 1 26 2 42 3 213	85 33 40 1 36 218	2 194 3 79 4 82 5 64 6 167 7 25L 8 86	197 72 79 57 165 33 83	-2 24 -3 435 -4 215 -5 223 -6 152 -7 239 -8 37	25 410 205 219 182 236 38	3 34 4 20L 5 27L H,6,0 6 27L	35 30 22	-1 71 1 114 3 162 5 182 7 27L +,1,7	101 143 183 204 26	H, 1, 8 6 27L 5 47 4 55 3 46 2 69	15 68 47 78	-6 2 -9 14 -4 8 -3 2 -2 2 -1 c	24 147 78 L 18 L 3 81 25
8 28L 9 28L H,9,0 7 28L 6 40	13 20 10	7 31 8 261 9 89 10 35 11 85	33 10 88 36 81	5 283 4 210 3 157 2 326 1 581 0 156 -1 218	281 222 153 331 605 156 216	6 54 5 122 4 26L 3 134 2 35 1 125 C 230	53 116 26 128 34 124 210	-2 219 -3 123 -4 175 -5 31 -0 343 -7 167 -8 131	211 119 166 29 338 163 130	2 160 1 31 0 199 -1 65	0.4 141 38 204 66 43	9 98 10 27L ++2+4 10 79 9 76	90 3 72 74	-9 38L -10 29 -11 131 H,4,5 -12 39	54 31 134	5 43 4 20L 3 162 2 134 1 241 0 52 -1 200	31 14 145 127 15 90	8 27L 7 55 6 72 5 68 4 144 3 42	4 56 74 61 160 90	1 135 C 65 -1 84 -2 154 -3 24L -4 37 -5 71	159 76 98 142 8 23 73	1 4 2 2 3 6 4 5 H,	51 64 64
5 110 4 32 3 74 2 175 1 255 H,10.	125 8L 190 268	11 39 10 65 9 116 8 66 7 60 6 92	40 115 40 41	-2 38 -3 22C -4 407 -5 55 -6 4C -7 234 -8 76	46 201 401 42 95 225	-1 119 -2 52 -3 202 -4 134 -5 197 -6 127 -7 30	120 45 196 196 196 196 196	-9 11C -10 46 -11 1C1 -12 51 H, 4, 3	111	-3 21 H+5 -6 102 -5 54 -5 54	L 109	8 25L 7 191 6 122 5 348 4 57 3 22L 2 134	12 182 106 139 54 15	-1C 61 -9, 57 -8 181 -7 148 -6 195 -5 319 -4 33	eC 53 182 149 194 301 28	-2 25 -3 27 -4 279 -5 105 -6 190 -7 251 -8 151	19 270 105 194 16	2 77 1 33 0 62 -1 73 -2 96 -3 390 -4 59	85 25 95 75 93 371 60	-6 262 -7 138 -8 46 -9 27L F,2,8	26C 149 59 19	3 11 1 4 -1 6 -3 3 -5 14 -7 12	157 63 113 91 198 198
0 337 1 28L 2 67 3 28L 4 134 5 28L	358 27 74 37 151 35	5 204 4 125 3 297 2 129 1 90 0 365 -1 138	202 117 301 131 90 301 132	-9 158 -10 108 -11 89 -12 57 H, 2, 2	155 99 79 59	-8 210 -9 116 -16 40 H+8+2 -9 29L	***	-12 87 -11 43 -10 25L -9 273 -8 30 -7 154 -9 49	84 40 8 273 30 158 54	-3 50 -2 65 -1 39 0 55 1 101 2 99	51 58 36 101 94 1 72	1 201 C 201 -1 143 -2 63 -3 201 -4 300 -6 361	3 140 57 279 348	-3 221 -2 84 -1 128 0 319 1 61 2 199 3 73	27 62 115 302 61 186 61	-9 93 H, 5, 6 -10 70 -9 31 -8 240	94 15 253	-5 160 -6 43 -7 114 -8 141 -9 105 -10 147 -11 84	162 37 117 149 112 183 93	-9 26L -8 183 -7 5C -e 25L -5 125 -4 223 -3 24L	200	-4 2 -2 2 0 4	10 1 12 86
H.11, 2 61 1 131 H.11,	0 83 144	-3 219 -4 224 -5 329 -6 91 -7 510 -8 81 -9 25L	220 213 334 96 52C 72	-11 52 -10 26L -9 79 -8 110 -7 348 -6 112 -5 441	57 16 85 108 109	-7 132 -6 110 -5 118 -4 184 -3 34 -2 148 -1 251	137 115 123 180 14?	-4 56 -3 381 -2 160 -1 20L 0 444 1 4C7 2 273	55 379 152 18 434 401	5 50 H-0	,4 ,4 L 38	-5 308 -8 218 -9 133 -10 176 -11 58 -12 164	375 218 138 176 49 160	5 151 6 152 7 251 8 86 9 271	139 135 12 82 24	-6 147 -5 70 -4 174 -3 231 -2 56 -1 231 0 173	145 71 160 14	+,2,7 -1C 26L -4 185 -6 34 -7 5C	5 191 29 45 75	-1 125 0 24L 1 137 2 33 3 64 4 26L 5 26i	125 10 14C 42 60 12	C 9 -1 2 -2 3 -3 2 -4 7	81 10 10 135 10 8 74
-2 136 -1 108 0 29L 1 36 2 49	148 113 10 34 54	-10 2eL -11 85 -12 35 H,3,1	3 81 32	-4 530 -3 215 -2 519 -1 109 0 487 1 237	517 207 522 100 482 234	C 224 1 106 2 54 3 78 4 270 5 35	227 113 57 78 272 43	5 95 4 155 5 23L 6 142 7 148 8 47	80 159 41 137 183 39	3 34 2 30 1 94 0 68 -1 199 -2 25	35 97 67 201 1 12	+, 1, 4 -12 41 -11 95 -10 53 -9 156	37 97 44	8 44 7 192 6 25L 5 176 4 24L	39 179 13 164 20	1 93 2 200 3 35L 4 267 5 34 6 20L	25e 15 251 33 18	-5 364 -4 260 -3 55 -2 170 -1 217 0 231	346 248 52 156 206 11	6 30 H, 3, 8 5 32 4 58	24 34 57	-4 4 -3 3 -2 13 -1 3	28 43 138 55

Atome S(1)–S(2'), S(2)–S(1'), C(1)–C(2'), C(2)–C(1'), C(3)–C(6'), C(6)–C(3'), C(4)–C(5') und C(5)–C(4') hat die Gleichung: 0,1408x+7,4093y+4,7593z-6,1547=0(x, y und z sind relative auf die kristallographischen Achsen bezogene Koordinaten). Die mittlere quadratische Abweichung der die Spiegelebene definierenden

Tabelle 3. Bindungslängen (Å), Bindungswinkel (°) und Diederwinkel (°)

- (a) Bindungslängen
- In Klammern die Standardabweichungen in Einheiten der letzten Stelle

S(1) - S(3)	2,058 (1)	C(1) - H(12)	0,98 (5)
S(2) - S(3')	2,050 (1)	C(2) - H(22)	0,94 (4)
S(1) - C(1)	1,858 (4)	C(3) - H(31)	1,05 (5)
S(2) - C(2)	1,859 (4)	C(6) - H(61)	1,12 (6)
C(1) - C(6)	1,535 (6)	C(3) - H(32)	1,05 (5)
C(2) - C(3)	1,538 (5)	C(6)–H(62)	0,93 (5)
C(3) - C(4)	1,544 (6)	C(4) - H(41)	1,00 (5)
C(5) - C(6)	1,542 (7)	C(5) - H(51)	1,03 (5)
C(1) - C(2)	1,531 (5)	C(4) - H(42)	1,01 (5)
C(4) - C(5)	1,531 (7)	C(5) - H(52)	1,08 (4)

(b) Bindungswinkel

ĺn	Klammern	die	Standardabweichungen	in	Einheiten
			der letzten Stelle		

	~
$\begin{array}{l} S(1) -S(3) -S(2') \\ S(3) -S(1) -C(1) \\ S(3') -S(2) -C(2) \\ S(1) -C(1) -C(2) \\ S(2) -C(2) -C(1) \\ S(1) -C(1) -C(6) \\ S(2) -C(2) -C(3) \end{array}$	109,51 (6) 105,58 (12) 104,68 (13) 111,97 (25) 112,03 (25) 106,95 (29) 106,65 (27)
$\begin{array}{c} C(2)-C(1)-C(6)\\ C(1)-C(2)-C(3)\\ C(1)-C(6)-C(5)\\ C(3)-C(4)-C(5)\\ C(6)-C(5)-C(4) \end{array}$	113,35 (34) 113,42 (30) 113,03 (36) 110,83 (39) 111,09 (37)
$\begin{array}{l} S(1) - C(1) - H(12) \\ S(2) - C(2) - H(22) \\ C(2) - C(1) - H(12) \\ C(1) - C(2) - H(22) \\ C(6) - C(1) - H(12) \\ C(3) - C(2) - H(22) \\ C(2) - C(3) - H(31) \end{array}$	99,2 (32) 107,4 (27) 109,8 (30) 106,1 (27) 114,6 (28) 111,2 (26) 107,0 (27)
H(31)-C(3)-H(32) H(61)-C(6)-H(62) H(41)-C(4)-H(42) H(51)-C(5)-H(52)	111,1 (34) 105,6 (39) 107,5 (40) 107,6 (35)
$\begin{array}{c} C(1)-C(6)-H(61)\\ C(2)-C(3)-H(32)\\ C(1)-C(6)-H(62)\\ C(4)-C(3)-H(31)\\ C(5)-C(6)-H(61)\\ C(4)-C(3)-H(32)\\ C(5)-C(6)-H(62)\\ C(3)-C(4)-H(41)\\ C(6)-C(5)-H(51)\\ C(3)-C(4)-H(42)\\ C(6)-C(5)-H(52)\\ C(5)-C(4)-H(41)\\ C(4)-C(5)-H(51)\\ C(5)-C(4)-H(42)\\ C(5)-C(4)-H(42)\\ C(5)-C(4)-H(42)\\ C(5)-C(5)-H(52)\\ C(4)-C(5)-H(52)\\ \end{array}$	$106,4 (24) \\104,1 (25) \\110,4 (30) \\107,6 (25) \\110,6 (26) \\114,0 (24) \\110,4 (32) \\107,4 (26) \\108,0 (27) \\117,7 (25) \\109,4 (24) \\102,9 (26) \\107,7 (25) \\109,5 (27) \\112,9 (25) \\109,5 (27) \\100,$

Tabelle 3 (Fort.)

(c) Diederwinkel

Blickrichtung vom 2. zum 3. Atom, positive Winkel im Uhr-

zeigersinn	
S(2')-S(3)-S(1)-C(1)	81,5
S(1')-S(3')-S(2)-C(2)	80,5
S(3) - S(1) - C(1) - C(2)	50,6
S(3')-S(2)-C(2)-C(1)	53,4
S(1) - C(1) - C(2) - S(2)	- 164,5
S(3) - S(1) - C(1) - C(6)	175,3
S(3')-S(2)-C(2)-C(3)	178,1
S(1) - C(1) - C(2) - C(3)	74,8
S(2) - C(2) - C(1) - C(6)	74,5
C(6)-C(1)-C(2)-C(3)	- 46,3
C(1)-C(2)-C(3)-C(4)	49,3
C(2)-C(1)-C(6)-C(5)	49,1
C(2)-C(3)-C(4)-C(5)	- 54,4
C(1)-C(6)-C(5)-C(4)	- 54,3
C(3)-C(4)-C(5)-C(6)	56,4

Punkte von dieser beträgt: $\sigma = 0,007$ Å. Die Abstände der Atome der asymmetrischen Einheit von der Ebene sind die folgenden:

S(3)	-0,008 Å		
S(1)	-1,667	S(2)	—1,687 Å
C(1)	-1,913	C(2)	-1,909
C(3)	-3,202	C(6)	-3,213
C(4)	-4,476	C(5)	-4,478.

Die über die Spiegelebene ineinander überführbaren Atome haben zueinander einen Abstand, der sich nicht relevant von der Summe ihrer Abstände zur angenommenen Spiegelebene unterscheidet. Die Abweichungen von der höheren 2/m Symmetrie liegen also innerhalb der Fehlergrenze. Entsprechend dieser Symmetrie

Fig. 1. Fourier- und Differenzfouriersynthese: (a) linke Molekülhälfte: Fouriersynthese. Höhenlinien bei C-Atomen beginnend mit 2 e Å⁻³ im Abstand von 1 e Å⁻³, bei S-Atomen beginnend mit 2 e Å⁻³ im Abstand von 2 e Å⁻³; (b) rechte Molekülhälfte: Wasserstoffatome in einer abschliessenden Differenzfouriersynthese. Höhenlinien beginnend mit 0,1 e Å⁻³ im Abstand von 0,1 e Å⁻³.

sind die in Fig. 2 angegebenen Abstände und Winkel gemittelt. Die Diskussion der Molekülgeometrie erfolgt im folgenden unter Berücksichtigung der 2/m Symmetrie der Molekel.

Der zehngliedrige Ring hat eine Geometrie mit ausschliesslich gestaffelten partiellen Konformationen und zwar mit acht synklinalen und zwei antiperiplanaren. Die Konformation ist analog derjenigen, die von Dunitz und anderen Autoren (Huber-Buser & Dunitz, 1960, 1961, 1966; Nowacki & Mladeck, 1961; Dunitz & Venkatesan, 1961; Huber-Buser, Dunitz & Venkatesan, 1961; Dunitz & Weber, 1964; Mladeck & Nowacki, 1964) für das Cyclodecangerüst gefunden wurde. Dunitz & Prelog (1960) wiesen schon darauf hin, dass diese Konformation nicht nur für die Cyclodecane sondern für mittlere Ringe mit der Gliedzahl 10 allgemein charakteristisch sein könnte. Der symmetrische Einbau von zwei S-S-S-Bruchstücken anstelle von CH₂- CH_2 - CH_2 -Einheiten führt zu keiner grundsätzlichen Konformationsänderung des Zehnrings. Fig. 3 und 4 sollen den Zusammenhang zwischen der Konformation des *trans*, *trans*-Perhydro-dibenzo[*d*, *i*] [1,2,3,6,7,8]hexathiecins und derjenigen des Cyclodecans veranschaulichen.

Im Cyclodecangerüst haben wir drei Typen von Ringpositionen (I, II, III) sowie 6 Typen von Wasserstoffatomen (Iy, IIy, IIIy und Iz, IIz, IIIz) zu unterscheiden (vgl. Huber-Buser & Dunitz, 1960). In unserem 1,2,3,6,7,8-Hexathiecan sind die Ringpositionen I und II durch Schwefel ersetzt. Die verbleibenden extraanularen H-Atome (IIIy) sind über die annellierten Cyclohexanringe substituiert. Die sich durch besonders starke transanulare Wechselwirkungen auszeichnenden 6 intraanularen H-Atome im Cyclodecan sind auf 4 des Typs IIIz reduziert.

Die Cyclohexanringe liegen in der energetisch gün-

Fig. 2. Projektion des Moleküls auf die Ebene C1, C2, C1', (C2'). Die angegebenen Abstände (Å) und Winkel (°) sind entsprechend der vollen Symmetrie des Moleküls (2/m) gemittelt. Die Diederwinkel im 6- und 10-Ring sind angegeben.

trans.trans-Perhydro-dibenzo [d i] [12.3.6.7.8] hexathiecin

1.6-trans-Diamino-cyclodecan-dihydrochlorid (Kation)

Fig. 3. Gegenüberstellung von *trans,trans*-Perhydro-dibenzo[*d*,*i*] [1,2,3,6,7,8]hexathiecin (links) und 1,6-*trans*-Diaminocyclodecandihydrochlorid (trikline Modifikation) (Huber-Buser & Dunitz, 1961).

stigen Sesselkonformation vor. Die Stellung der vicinalen S-Substituenten ist transdiaxial bezüglich des Cyclohexanrings.

Der Ersatz von CH_2 -Gruppen durch Schwefelatome führt, obwohl die Konformationen im Grunde analog sind, bezüglich der transanularen H-H-Kontakte sowie den Bindungs- und Diederwinkeln zu charakteristischen Unterschieden zwischen Cyclodecan und dem hier beschriebenen Hexathiecanring.

Die intraanularen Wasserstoffatome (IIIz) weisen im 1,2,3,6,7,8-Hexathiecan einen Abstand von 2,3 Å gegenüber 1,8 Å (Huber-Buser & Dunitz, 1960) bzw. 2,05 Å (Mladeck & Nowacki, 1964) im Cyclodecan auf. Die sterisch ungünstigen intraanularen Wasserstoffatome in Position Iz entfallen im Hexathiecan (Fig. 3). Die Valenzwinkel im Zehnring weichen bis auf denjenigen an S(3) (Position des Typs I) kaum von den für diese Winkel üblichen Werten ab, wogegen im Cyclodecan alle Winkel aufgeweitet sind. Die Diederwinkel unterscheiden sich in beiden Ringsystemen. Der S-C-C-S-Diederwinkel beträgt 164°, der S-S-C-C-Diederwinkel 52°, der S-S-C-Diederwinkel 81° gegenüber 152, 56, 66° für die entsprechenden Diederwinkel im Cyclodecan (Fig. 4). Aus dieser Gegenüberstellung geht hervor, dass der Hexathiecanring weniger gespannt ist als der Cyclodecanring.

Der Einbau der Schwefelatome in den Zehnring macht diesen jedoch noch keinesfalls spannungsfrei. Auch in ihm muss die transanulare H-H-Wechselwirkung über ein gewisses Mass an Pitzer- und Bayer-Spannung vermindert werden. Dies zeigt unter anderem der Twist um die C-C-Bindung. Der Diederwinkel weicht um 16° von der idealen antiperiplanaren partiellen Konformation ab. Hierdurch werden die transanularen H-H-Abstände vergrössert. In die gleiche Richtung wirkt die Aufweitung des Winkels an S(3). Dieser Winkel ist mit 109,5° für S-S-S-Winkel verhältnismässig gross. Abrahams (1956) gibt einen mittleren S-S-S-Winkel von 106° an. Auch neuere Strukturanalysen zeigen einen kleineren Winkel als den Tetraederwinkel (z.B. Lee & Bryant, 1964).

Beim Vergleich der Diederwinkel der synklinalen partiellen Konformationen im Zehnring ist zu berücksichtigen, dass schon in einem Modell des 1,2,3,6,7,8-Hexathiecans ohne Kompensation der transanularen Wechselwirkungen der S-S-C-Diederwinkel > 60° und der S-S-C-C-Diederwinkel $< 60^{\circ}$ ist. Es wurde darauf hingewiesen (Pauling, 1949; Bergson, 1960, 1961), dass ein S-S-S-R-Diederwinkel in der Grössenordnung von 90° energetisch am günstigsten ist, da in diesem Falle die Abstossung zwischen $p(\pi)$ -Orbitalen an benachbarten S-Atomen ein Minimum besitzt. Nach Tuinstra (1967) sollte wegen der Abstossung der $p(\pi)$ -Orbitale übernächster Nachbarn eine kleine Abweichung von diesem Winkel energetisch noch vorteilhafter sein. Der von uns gefundene Diederwinkel von 81° kommt demnach dem Energieminimum recht nahe. Die R-S-S-S-R'-Kette liegt in der cis-Konfiguration vor (R und R' auf der gleichen Seite der S-S-S-Ebene).

Nach Abrahams (1956) sollte für diese Konfiguration der Diederwinkel >90° sein. Unser Winkel steht mit 81° hierzu im Widerspruch. Genauso wie der eben diskutierte Diederwinkel liefert der S-S-C-C-Diederwinkel mit 52° keinen gravierenden Beitrag zur Pitzerspannung.

Der S-S-Abstand beträgt 2,054 Å und stimmt mit dem überein, der im rhomboedrischen Schwefel (S₆) (2,057 Å, Donohue, Caron & Goldish, 1961), orthorhombischen Schwefel (S₈) (2,048 Å bzw. 2,047 Å, Cooper, Bond & Abrahams, 1961; Caron & Donohue, 1965) und kürzlich im 1,2,3,4-Tetrathiadekalin (2,057 Å, Fehér, Klaeren & Linke, 1970, 1972) gefunden wurde. Dieser Abstand ist identisch mit dem, der von Huggins (1953) für eine S-S-Einfachbindung (2,053 Å) in S₈ berechnet wurde. Für den S(II)-S(II)-Einfachbindungsabstand werden von Pauling (1960)

2,08 Å und von Hordvik (1966) 2,10 Å angegeben. Ob S(II)–S(II)-Bindungslängen von 2,04–2,09 Å einen Doppelbindungsanteil $[d(\pi)-p(\pi)]$ besitzen, wurde in der Vergangenheit immer wieder diskutiert (Powell & Evring, 1943; Abrahams, 1955; Hordvik, 1966). Tatsache ist, dass die S(II)-S(II)-Bindungsabstände etwa von 2,0-2,1 Å variieren und offensichtlich ein Zusammenhang zwischen Diederwinkel und Bindungsabstand besteht (Hordvik, 1966). Ob man nun in unserem Fall (S-S: 2,054 Å) einen Doppelbindungsanteil postulieren soll, sei dahinges ellt. Wir tendieren aber eher dazu, unsere S-S-Bindung als reine Einfachbindung zu beschreiben, vor allen Dingen, wenn wir den C-S-Bindungsabstand betrachten. Der C-S(II)-Einfachbindungsabstand liegt normalerweise bei 1,82 Å (Tables of Interatomic Distances and Configuration in Molecules and Ions, 1965). Wir finden einen solchen von 1,86 Å, der sich signifikant von diesem unterscheidet. Würde man in diesem Falle nur den Bindungsabstand als ein Kriterium für einen Doppelbindungscharakter ansehen, dann müsste die C-S(II)-Bindung im Normalfall auch einen Doppelbindungsanteil aufweisen, was aber nicht sinnvoll ist.

Der bezüglich des S-C-C-S-Fragmentes beschriebene Twist um die C-C-Bindung im Zehnring bleibt natürlich nicht ohne Folgen auf die Konformation des Cyclohexanringes. Der Einbau der Atome C(1) und C(2) in den Hexathiecanring führt zu einer Abflachung der Sesselkonformation des Cyclohexanringes, wobei sich diese besonders an den Kondensationsstellen auswirkt. Diese Tatsache geht schon aus einer Betrachtung der Bindungswinkel im Cyclohexanring hervor. Während der Winkel an C(4) [bzw. C(5)] mit 111° demjenigen im 1,4-trans-Diaminocyclohexan-dihydrochlorid (110,7°) (Dunitz & Strickler, 1965) entspricht, sind die übrigen Winkel auf ca. 113° aufgeweitet. Noch besser kommt das vor allen Dingen bezüglich des unterschiedlichen Grades der Abflachung an den einzelnen Ringgliedern in den C-C-C-Diederwinkeln zum Ausdruck. Geht man von C(1) nach C(5), dann werden deren Beträge grösser (-46,3; 49,2; -54,4; 56,4°). Der Twist um die C(4)–C(5)-Bindung ist mit $56,4^{\circ}$ praktisch derselbe wie in dem zitierten Cyclohexanderivat (56,8°) (Dunitz & Strickler, 1965). Die beste Ebene durch den Cyclohexanring hat die Gleichung: -3,499x-4,9367y+6,8166z+0,8514=0 (x, y, z sind relative auf die kristallographischen Achsen bezogene Koordinaten). Die Abstände der Kohlenstoffatome von dieser Ebene sind:

C(1)	—0,180 Å	C(2)	0,181 Å
C(3)	-0,216	C(6)	0,213
C(4)	0,250	C(5)	-0,249 .

Fig. 5. Konfiguration des hypothetischen trans, trans Isomeren.

Die Abstände werden mit zunehmender Entfernung der Atome von den Ringverknüpfungsstellen grösser, worin sich auch widerspiegelt, dass die Abflachung des Ringes primär von der Torsion um C(1)-C(2) ausgeht. Eine weitergehende Torsion um die C(1)-C(2)-Bindung würde zwar die intraanularen H-H-Abstände im Zehnring vergrössern, den Cyclohexanring jedoch noch stärker spannen.

Die C-C-Abstände sind mit einer mittleren Länge von 1,535 Å normal. Die mittlere C-H-Bindungslänge (1,02 Å) zeigt die für röntgenographisch ermittelte C-H-Abstände charakteristische Verkürzung.

Es sei darauf hingewiesen, dass prinzipiell beim *trans,trans*-Perhydrodibenzo[*d*, *i*] [1,2,3,6,7,8]hexathiecin noch eine azentrische isomere Verbindung möglich ist (Fig. 5), bei der einer der beiden Cyclohexanringe nicht in den Positionen III*y* sondern III*z* an den Zehnring gebunden ist. – Da bei der Synthese des *trans,trans*-Perhydro-dibenzo[*d*, *i*] [1,2,3,6,7,8] hexathiecins (Fehér & Degen, 1967) *trans*-Cyclohexan-1,2-dithiol eingesetzt wurde, können unter den angewendeten Reaktionsbedingungen nur *trans,trans*-Formen entstehen. – Das mögliche (racemische) *trans,trans*-Isomere jedoch wurde bis jetzt nicht gefunden. Ein Grund hierfür mag sein, dass aus sterischen Gründen der Zehnring eine grundsätzlich andere Konformation aufweisen müsste.

Packung der Moleküle

Tabelle 4 gibt einen Überblick über die kürzesten zwischenmolekularen Abstände. Diese sind ausnahmslos \geq der Summe der van der Waals'schen Radien der betreffenden Atome. Extrem kurze Kontaktabstände kommen nicht vor, so dass man wesentliche Einflüsse der Kristallpackung auf die gefundene Molekülkonformation ausschliessen kann.

Fig. 6 zeigt eine Projektion der Elementarzelle auf die (010)-Ebene. Die Moleküle packen in Säulen, die sich in Richtung der monoklinen *b*-Achse erstrecken. Innerhalb der Säulen werden die Moleküle über die Gittertranslation **b** ineinander übergeführt. Die kürzesten Kontaktabstände befinden sich nicht innerhalb der Säulen, sondern zwischen denselben. Von den in Tabelle 4 aufgeführten Kontaktabständen ist nur einer $- H(42) \cdots S(3) (1-x, -y, 1-z)$: 3,30 Å – innerhalb der Säulen.

Literatur

- ABRAHAMS, S. C. (1955). Acta Cryst. 8, 661-671.
- ABRAHAMS, S. C. (1956). Quart. Rev. 10, 407–436.
- BERGSON, G. (1960). Ark. Kem. 16, 315-326.
- BERGSON, G. (1961). Ark. Kem. 18, 409-434.
- CARON, A. & DONOHUE, J. (1965). Acta Cryst. 18, 562-565.
- COOPER, A. S., BOND, W. L. & ABRAHAMS, S. C. (1961). Acta Cryst. 14, 1008.
- DONOHUE, J., CARON, A. & GOLDISH, E. J. (1961). J. Amer. Chem. Soc. 83, 3748-3751.

Tabelle 4. Kürzeste zwischenmolekulare Abstände zwischen den verschiedenen Atomtypen

Atom in der	~		Kontaktabstand in Å
asymmetrischen	Symmetriebezogenes		$(\sigma, in Einheiten der$
Einheit	Atom	Symmetrieoperation	letzten Stelle)
H(32)	H(61)	$\frac{1}{2} + x$ $\frac{1}{2} - y$ $\frac{1}{2} + z$	2,50 (6)
H(52)	H(42)	1-x - y - z	2,54 (7)
H(41)	H(42)	1-x - y - z	2,56 (7)
H(42)	H(42)	1-x -y -z	2,59 (6)
H(12)	H(52)	$\frac{1}{2} - x$ $\frac{1}{2} + y$ $\frac{1}{2} - z$	2,60 (7)
H(42)	C(4)	1-x -y -z	2,91 (5)
H(42)	C(5)	1-x - y - z	3,15 (5)
C(5)	H(12)	$\frac{1}{2} - x$ $\frac{1}{2} + y$ $\frac{1}{2} - z$	3,16 (5)
H(61)	C(3)	$-\frac{1}{2}+x$ $\frac{1}{2}-y$ $-\frac{1}{2}+z$	3,16 (4)
H(32)	S(2)	$\frac{3}{2} - x - \frac{1}{2} + y = \frac{1}{2} - z$	3,11 (5)
H(32)	S(3)	$\frac{1}{2} + x$ $\frac{1}{2} - y - \frac{1}{2} + z$	3,15 (5)
H(42)	S(3)	1-x - y 1-z	3,30 (5)
H(62)	S(3)	$-\frac{1}{2}+x$ $\frac{1}{2}-y$ $-\frac{1}{2}+z$	3,30 (6)
C(4)	C(4)	1-x - y - z	3,51 (1)
C(3)	C(6)	$\frac{1}{2} + x$ $\frac{1}{2} - y$ $\frac{1}{2} + z$	3,70 (1)
C(5)	C(4)	1-x $-y$ $-z$	3,85 (1)
C(2)	C(6)	$\frac{1}{2} + x$ $\frac{1}{2} - y$ $\frac{1}{2} + z$	3,86 (1)
S(2)	S(1)	$\frac{1}{2} + x$ $\frac{1}{2} - y - \frac{1}{2} + z$	3,72 (1)
Alle übrigen	S-S-Kontaktabstände		>4·0 Å
C(3)	S(2)	$\frac{3}{2} - x - \frac{1}{2} + y = \frac{1}{2} - z$	3,86 (1)
Alle übrigen	C-S-Kontaktabstände		>4,0 Å

- DUNITZ, J. D. & PRELOG, V. (1960). Angew. Chem. 72, 896–902.
- DUNITZ, J. D. & STRICKLER, P. (1965). Helv. Chim. Acta, 48, 1450–1456.
- DUNITZ, J. D. & VENKATESAN, K. (1961). Helv. Chim. Acta, 44, 2033–2041.
- DUNITZ, J. D. & WEBER, H. P. (1964). Helv. Chim. Acta, 47, 951–956.
- FEHÉR, F. & DEGEN, B. (1967). Angew. Chem. 79, 689–690; Angew. Chem. Int. Ed. 6, 703.
- FEHÉR, F., KLAEREN, A. & LINKE, K. H. (1970). Angew. Chem. 82, 882–883; Angew. Chem. Int. Ed. 9, 895–896.
- FEHÉR, F., KLAEREN, A. & LINKE, K.-H. (1972). Acta Cryst. B28, 534–537.
- HECHTFISCHER, S., STEIGEMANN, W. & HOPPE, W. (1970). Acta Cryst. B26, 1713–1722.
- HOPPE, W., GASSMANN, J. & ZECHMEISTER, K. (1970). Crystallographic Computing. Herausgeber F. R. AHMED. S. 26. Copenhagen: Munksgaard.
- HOPPE, W., HECHTFISCHER, S. & ZECHMEISTER, K. (1969). Z. Kristallogr. 128, 441–442.
- HORDVIK, A. (1966). Acta Chem. Scand. 20, 1885-1891.
- HUBER-BUSER, E. & DUNITZ, J. D. (1960). Helv. Chim. Acta, 43, 760-768.
- HUBER-BUSER, E. & DUNITZ, J. D. (1961). Helv. Chim. Acta, 44, 2027–2033.
- HUBER-BUSER, E. & DUNITZ, J. D. (1966). Helv. Chim. Acta, 49, 1821–1827.
- HUBER-BUSER, E., DUNITZ, J. D. & VENKATESAN, K. (1961). Proc. Chem. Soc. S. 463.
- HUGGINS, M. L. (1953). J. Amer. Chem. Soc. 75, 4126-4133.
- International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.
- LEE, J. D. & BRYANT, M. W. R. (1969). Acta Cryst. B25, 2094–2101; 2497–2504.
- LEMMER, F., FEHÉR, F., GIEREN, A., HECHTFISCHER, S. & HOPPE, W. (1970). Angew. Chem. 82, 319-320; Angew. Chem. Int. Ed. 9, 313-314.

Fig.6. Projektion der Elementarzelle auf die (010)-Ebene. Die kürzesten van der Waals'schen Abstände zwischen den Säulen sind eingetragen.

MLADECK, M. H. & NOWACKI, W. (1964). Helv. Chim. Acta, 47, 1280-1285.

NOWACKI, W. & MLADECK, M.H. (1961). Chimia, 15, 531-532.

PAULING, L. (1949). Proc. Natl. Acad. Sci. Wash, 35, 495-499.

PAULING. L. (1960). *The Nature of the Chemical Bond*. 3rd ed. S. 224. Ithaca: Cornell Univ. Press.

- POWELL, R. E. & EYRING, H. (1943). J. Amer. Chem. Soc. 65, 648–654.
- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). J. Chem. Phys. 42, 3175-3187.
- STEWART, J. M. (1967). Crystal Structure Calculations System, X-RAY-67. Computer Science Center, Univ. of Maryland, and Research Computer Laboratory, Univ. of Washington.
- Tables of Interatomic Distances and Configuration in Molecules and Ions, Supplement 1956–1959 (1965). S. 22s. London: The Chemical Society.
- TUINSTRA, F. (1967). Structural Aspects of the Allotropy of Sulphur and Other Divalent Elements, S. 26. Delft: Uitgeverij Waltman.

Acta Cryst. (1973). B29, 2141

The Crystal Structure of Rubidium Tetrachromate, Rb₂Cr₄O₁₃

By Percy Löfgren

Institute of Inorganic and Physical Chemistry, University of Stockholm, Box 6801, S-113 86 Stockholm, Sweden

(Received 6 April 1973; accepted 29 April 1973)

The crystal structure has been determined and refined to a final R value of 0.038 from 2089 independent reflexions registered with a diffractometer (Mo Ka radiation). The space group is P_{21}/c (No. 14) with cell constants a=17.624 (2), b=7.688 (2), c=9.492 (2) Å, $\beta=91.95^{\circ}$ (1), V=1285 Å³, and Z=4. The structure contains $Cr_4O_{15}^2$ ions composed of four CrO_4 tetrahedra joined by shared corners. The Cr-O (bridge) distances are in the range 1.691–1.846 Å, mean value 1.77 Å. They are significantly longer than the Cr-O (non-bridging) distances, ranging from 1.576–1.621, mean value 1.61 Å. The Cr-O-Cr angles exhibit great variation: 147.2, 139.3, and 120.5°. The two crystallographically independent rubidium ions are each irregularly coordinated to eleven oxygen atoms with Rb-Odistances in the range 2.88–3.47 Å. The Cr-O distances and the conformation of the $Cr_4O_{13}^2$ ions are compared with those observed in other related chromium compounds.

Introduction

Chromium oxides and chromates have long been studied at this Institute. A review of the early work in this field has been given by Wilhelmi (1966a). Subsequent studies within this program by the present author have been concerned with the crystal structures of various polychromates. The conditions of formation of the alkali polychromates have been thoroughly analysed by Schreinemakers & Filippo (1906). The methods described by these authors were adapted to the preparation of rubidium polychromates. The results of crystalstructure studies on two modifications of Rb₂Cr₂O₇ $(C2/c \text{ and } P2_1/n \text{ respectively})$ have been described in previous articles (Löfgren & Waltersson, 1971; Löfgren, 1971a). A preliminary note on the crystal structures of Rb₂Cr₃O₁₀ and Rb₂Cr₄O₁₃ has also been published (Löfgren, 1971b).

Experimental

Rubidium tetrachromate was prepared by adding 55 g chromium trioxide to a hot solution containing 2.7 g rubidium dichromate in 45 ml water. Dark red prismatic crystals were obtained by fractional crystalliza-

tion at room temperature. The main part of the mother liquor was removed from the crystals by treatment on an unglazed clay plate. Washing with water or diluted CrO_3 solutions is excluded because of the limited area of stability for $Rb_2Cr_4O_{13}$ in the three-component system.

The amount of chromium in the samples was determined by titration with thiosulphate. The percentage by weight of chromium found in different fractions was in the range 36.4 ± 0.2 (calculated value 35.4). The density of the compound was determined from the loss of weight in diethyl phthalate, with a technique developed by Hörlin, Kihlborg & Niklewski. The observed density 3.01 ± 0.01 g cm⁻³ is in good agreement with the calculated value 3.033 g cm⁻³ for four formula units per cell. The deviations of the observed values for the chromium content and the density from the calculated values obviously arise from the difficulties in totally removing the mother liquor from the crystals.

The powder photographs were taken in a Guinier-Hägg focusing camera with Cu $K\alpha_1$ radiation, $\lambda = 1.54050$ Å, and potassium chloride, $a(20^{\circ}C) = 6.2919$ Å as an internal standard. The refinement of the cell parameters (cf. Table 1) was performed by the method of least squares. The powder pattern is listed in Table 2.